Name: _____

Boğaziçi University Department of Mathematics M.S. Program Entrance Exam <u>Time</u>: 9:00 – 12:00

PART A: Answer only two of the four questions below.

n

A 1 Determine whether each of the following expressions converges or diverges. Justify your answers. Indicate the theorems you use (if any).

(a)
$$\lim_{n \to \infty} \left(1 + \sin\left(\frac{1}{n}\right) \right)$$

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n \log n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$$

A 2 Evaluate the following integrals.

(a)
$$\int_0^1 \sin(\log x) dx$$

(b) $\int_0^\infty \int_0^\infty \frac{1}{(1+x^2+y^2)^2} dx dy$

(c)
$$\oint_{\mathcal{C}} (e^{x^2} - 2y)dx + (\log y)dy$$
, $\mathcal{C} = \{(x, y) \in \mathbb{R}^2 : (x - 2)^2 + (y - 1)^2 = 1\}$ with positive orientation.

A 3 Consider the plane 2x + y + z + 2 = 0 and the paraboloid $z = x^2 + 2y^2$.

- (a) Prove that they are disjoint.
- (b) Determine the shortest distance between them. (Hint: It might be helpful to think in terms of tangent planes of the paraboloid.)
- **A** 4 For every $k, n \in \mathbb{N}$ such that $k \leq n$, the following identity holds:

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.$$
(1)

- (a) Give two proofs of identity (1):
 - (i) using a combinatorial argument, and
 - (ii) using algebraic manipulation.
- (b) Prove that the identity

$$\sum_{k=0}^{r} \binom{n+k}{k} = \binom{n+r+1}{r}$$

holds for every $n, r \in \mathbb{N}$. (Hint: Use identity (1).)

PART B: Answer only **two** of the four questions below.

B 1 Let V be a finite dimensional vector space over \mathbb{C} and let T be a linear operator on V. Suppose that rank $(T^2) = \operatorname{rank}(T)$. Prove that the range and the null-space of T are disjoint.

B 2 Let $\operatorname{GL}_n(\mathbb{C})$ denote the group of invertible $n \times n$ -matrices with complex entries. Let $M \in \operatorname{GL}_n(\mathbb{C})$ be a matrix of finite order. Prove that M is diagonalizable.

B 3 Let G be a finite group and $g \in G$ be an element of order at least 3. Let $C_G(g)$ denote the centralizer of g in G and suppose that $|G: C_G(g)|$ is odd. Prove that g is not conjugate to g^{-1} .

B 4 Let G be a group and $a \in G$. Prove that a commutes with any of its conjugates if and only if a belongs to an abelian normal subgroup of G.

PART C: Answer only two of the four questions below.

C 1 Let $f_n : (0,1) \to \mathbb{R}$ be a sequence of continuous functions converging pointwise to some function $f : (0,1) \to \mathbb{R}$. Prove or disprove each of the following statements.

- (a) If f_n converges uniformly to f, then f is continuous.
- (b) If f is continuous, then f_n converges uniformly to f.

C 2 Let $f:(0,1) \to \mathbb{R}$ be a differentiable function. Prove or disprove each of the following statements.

- (a) If f is uniformly continuous, then f' is bounded.
- (b) If f' is bounded, then f is uniformly continuous.

C 3 Let (M, d) be a metric space, $A \subset M$ be nonempty, $x \in A$, and $B(x, r) = \{y \in M : d(x, y) < r\}$ for every r > 0. Prove or disprove each of the following statements.

- (a) If A is closed and $A \subset B(x, r)$ for some r > 0, then A is compact.
- (b) If A is compact, then A is closed and $A \subset B(x, r)$ for some r > 0.

C 4 Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function.

(a) Suppose f is bounded by a constant M on the circle $\{z \in \mathbb{C} : |z| = R\}$ for some R > 0. Prove that the coefficients C_k in the power series expansion of f about 0 satisfy

$$|C_k| \le \frac{M}{R^k}.$$

(b) Suppose there exist real constants A, B and an integer $n \ge 0$ such that $|f(z)| \le A + B|z|^n$ for every $z \in \mathbb{C}$. Prove that f is a polynomial of degree at most n. (Hint: Use part (a) to control the coefficients C_k for k > n.)