\qquad

PART A: Answer only three of the four questions below.
A 1 Show that if G is a non-abelian simple subgroup of S_{n} then G is contained in A_{n}.
A 2 Let R be a commutative ring with 1 in which every ideal is prime. Prove that R is a field.
A 3 Let R be a ring and $f: \mathbb{Q} \rightarrow \mathbb{R}$ and $g: \mathbb{Q} \rightarrow \mathbb{R}$ be ring homomorphisms. Show that if $\left.f\right|_{\mathbb{Z}}=\left.g\right|_{\mathbb{Z}}$ then $f=g$.

A 4 Let W be the space of $n \times n$-matrices over a field F and let f be a linear functional on W such that $f(A B)=f(B A)$ for every $A, B \in W$. Show that f is a multiple of the trace functional.

PART B: Answer only three of the four questions below.
B 1 Let (M, d) be a metric space, $A \subset M$ be nonempty, $x \in A$, and $B(x, r)=\{y \in M: d(x, y)<r\}$ for every $r>0$. Prove or disprove each of the following statements.
(a) If A is closed and $A \subset B(x, r)$ for some $r>0$, then A is compact.
(b) If A is compact, then A is closed and $A \subset B(x, r)$ for some $r>0$.

B 2 Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function (i.e., f is analytic on the whole complex plane).
(a) Suppose f is bounded by a constant M on the circle $\{z \in \mathbb{C}:|z|=R\}$ for some $R>0$. Prove that the coefficients C_{k} in the power series expansion of f about 0 satisfy

$$
\left|C_{k}\right| \leq \frac{M}{R^{k}}
$$

(b) Suppose there exist real constants A, B and an integer $n \geq 0$ such that $|f(z)| \leq A+B|z|^{n}$ for every $z \in \mathbb{C}$. Prove that f is a polynomial of degree at most n. (Hint: Use part (a).)

B 3 Let m denote the Lebesgue measure on the real line, $f: \mathbb{R} \rightarrow \mathbb{R}$ be an integrable function and $F(x)=\int_{-\infty}^{x} f d m$ for every $x \in \mathbb{R}$. Prove or disprove each of the following statements. Indicate the theorems you use (if any).
(a) F is continuous at every $x \in \mathbb{R}$.
(b) F is differentiable at every $x \in \mathbb{R}$.
(c) F is differentiable at m-a.e. $x \in \mathbb{R}$.

B 4 Let (X, \mathcal{F}, μ) be a measure space and $\left(f_{n}\right)_{n \geq 1}$ be a sequence of real-valued measurable functions on X. Prove or disprove each of the following statements.
(a) If $f_{n} \rightarrow 0$ in μ-measure, then $f_{n} \rightarrow 0 \mu$-a.e.
(b) If $f_{n} \rightarrow 0 \mu$-a.e., then $f_{n} \rightarrow 0$ in μ-measure.
(c) If $\mu(X)<\infty$ and $f_{n} \rightarrow 0 \mu$-a.e., then $f_{n} \rightarrow 0$ in μ-measure.

