Name:

Boğaziçi University Department of Mathematics Ph.D. Program Entrance Exam <u>Time</u>: 9:00 – 12:00

PART A: Answer only three of the four questions below.

- **A** 1 Show that if G is a non-abelian simple subgroup of S_n then G is contained in A_n .
- A 2 Let R be a commutative ring with 1 in which every ideal is prime. Prove that R is a field.

A 3 Let *R* be a ring and $f : \mathbb{Q} \to \mathbb{R}$ and $g : \mathbb{Q} \to \mathbb{R}$ be ring homomorphisms. Show that if $f|_{\mathbb{Z}} = g|_{\mathbb{Z}}$ then f = g.

A 4 Let W be the space of $n \times n$ -matrices over a field F and let f be a linear functional on W such that f(AB) = f(BA) for every $A, B \in W$. Show that f is a multiple of the trace functional.

PART B: Answer only three of the four questions below.

B 1 Let (M, d) be a metric space, $A \subset M$ be nonempty, $x \in A$, and $B(x, r) = \{y \in M : d(x, y) < r\}$ for every r > 0. Prove or disprove each of the following statements.

- (a) If A is closed and $A \subset B(x, r)$ for some r > 0, then A is compact.
- (b) If A is compact, then A is closed and $A \subset B(x, r)$ for some r > 0.
- **B 2** Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function (i.e., f is analytic on the whole complex plane).
 - (a) Suppose f is bounded by a constant M on the circle $\{z \in \mathbb{C} : |z| = R\}$ for some R > 0. Prove that the coefficients C_k in the power series expansion of f about 0 satisfy

$$|C_k| \le \frac{M}{R^k}.$$

(b) Suppose there exist real constants A, B and an integer $n \ge 0$ such that $|f(z)| \le A + B|z|^n$ for every $z \in \mathbb{C}$. Prove that f is a polynomial of degree at most n. (Hint: Use part (a).)

B 3 Let *m* denote the Lebesgue measure on the real line, $f : \mathbb{R} \to \mathbb{R}$ be an integrable function and $F(x) = \int_{-\infty}^{x} f \, dm$ for every $x \in \mathbb{R}$. Prove or disprove each of the following statements. Indicate the theorems you use (if any).

- (a) F is continuous at every $x \in \mathbb{R}$.
- (b) F is differentiable at every $x \in \mathbb{R}$.
- (c) F is differentiable at m-a.e. $x \in \mathbb{R}$.

B 4 Let (X, \mathcal{F}, μ) be a measure space and $(f_n)_{n\geq 1}$ be a sequence of real-valued measurable functions on X. Prove or disprove each of the following statements.

- (a) If $f_n \to 0$ in μ -measure, then $f_n \to 0$ μ -a.e.
- (b) If $f_n \to 0 \ \mu$ -a.e., then $f_n \to 0$ in μ -measure.
- (c) If $\mu(X) < \infty$ and $f_n \to 0$ μ -a.e., then $f_n \to 0$ in μ -measure.